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Molecular resolution of zeolite surfaces as
imaged by atomic force microscopy

James E. MacDougall, Sherman D. Cox, Galen D. Stucky, Albrecht L. Weisenhorn,
aul K. Hansma, and William S. Wise

Color Plate I Scolecite (001) surface imaged in air. The image Color Plate 2 Twinning observed on the scolecite (001) surface
size is 37 x 37 A. For the reader's convenience, a unit cell is out- in 0.1 M NaOH aqueous solution. The image size is 40 x 40 A
lined. The white arrow points to the six tetrahedra around a hole

ColorPlate 3 Large-scale image of stilbite (010) surface in 0.1 M Color Plate 4 Molecular-scale image of stilbite (010) surface
NaOH aqueous solution. The image size is 3200 x 3200 A; the imaged in 0.1 M NaOH aqueous solution. The image size is 174
height is about 70 A. The step height (averaged over 12 steps) is 174N
0.74 ± 0.06 nm
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Molecular resolution of zeolite surfaces: MacDougall et al.

Color Plate 5 Molecular-scale image of stilbite 10) surface Color Plate 6 Faujasite (111) surface imaged in 0.1 m NaOH
imaged in 0.1 m NaOH aqueous solution. The image size is 100 aqueous solution. The image size is 174 -174 A
100 A Three unit cells are outlined

Simulation of dynamic behaviors of benzene and
toluene inside the pores of ZSM-5 zeolite

Tomoyuki Inui and Yoshiaki Nakazaki

Color Plate 1 Display of pore-openin ba
structure of ZSM-5 crystal by computer
graphics
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Molecular resolution of zeolite surfaces as
imaged by atomic force microscopy
James L MacDougi, Sherm D. Cox,* and Galen D. Stucky

D~rmn of Chemssfr,, Unwerv" of Caifornia -Santa B arbara, Santa Barbara, CA,

Albrecht L Weisenhorn and Paul L. Hansima
Departmenmt of Physic, Unwsit of Cakforrai - Santa Barbara, Santa Barbanz, CA, USA

WMlam S. Wine
Department of GelgclSineUsvriyo aornia - Santa Barbara, Santa
Barbara, CA, USA

An atomnic-force microscope (AFM) has beaw used to probe the surfaces of several natural zeolite
crystals with know crystal structures. Scolecite, stilbite. and faulasite hae been studied, and their AFM
Wiages have been compared with models based on their crystal structure dat. In all cases, a particular
Miller pion of the crystal was imaged with the AFM. Scolecite crystal was imaged in air along the (001)
surface, and twitining, which had been confirmed by single-crystal X-ray diffraction, was observed on a
molecular scale. Stdlbfte (010) was imaged In 0.1 MA NaOH aqueous solution; both large- and
molecular-ecale Images of the surface were obtained. The AFM Image agreed well with the model of
the MO1) iurace Faujst was imaged along the M111) surface end showed a rough surface consistent
with cleavage through the four rings Joining the sodalte unit These obserations demonstrate the
utility of AFM for the characterization of zeolite surface structure and that it may lend Itself to observing
processes at the surfaes, such as surface reconstruction (manuscript in preparation) and ion
exchenge.

gapwmdm: Atomic farceiroscopy; acilt crystuic; surface. stilbits; scolecits; faulit

INTRODUMTON also have importance in catalytic reactions and ion-

The industrial 'morane of zeolites to areas of exchange processes. The interest in these areas had
catalytic crackingoF crude oil fractions and sieving of led us to use an atomic-force microscope (AFM) to
gases has led to a great interest in how molecules study both zeolite surfaces and surface adsorption of
interact with the surfaces of zeolites and how diffu- molecules.
sion on the external surface effects the interaction of Zeolites are crystalline aluminosilicates, made up of
a molecule with a particular zeolite surface. In a 2irsaigttaer brnn he-iesoa
previouts study,' we demonstrated that polar organic 4-connected net.2 Incorporation of Al atoms onto a
molecules are selectively aligned on the surface of silicate framework introduces a net negative charge,
polar molecular sieves (Al0411 or AIPO4-5) be- which must be compensated for with couritercations
fore diffusion into the channels, with the onset of a that coordinate loosely with the framework.* Natural-
second-order nonlinear optic effect (second harmo- ly occurring zeolites can be found in the form of large
nic generation) in the composite material. The single crystals (millimeters on a side) that are suitable

pheomnaof surface absorption of molecules may for our AFM study. The techniques required to use
phenmenaAFM for synthetic crystals that are currently available
_______________________________ (<1I mm) are feasible and being developed.

Addres reprint requst to Dr. Stucky at On Deprtmnt of Electron microscopy and electron diffraction have
Chemnistry, University of California - Santa Barbara, Santa been used to image zeolite frameworks and obtain
OBters. CA 93106, USA. structural information about complex zeolite struc-
teeived 16 July ION; r9Wee 27 December 19110; accepted 9 ture types.-5 These techniques require a high

Jauay s" vacuum to work effectively, and the electron beam

I Permaentm sdess: Akr Products and Chemicals, Inc, 7201
Wmailtw Blvd., Alienwun, PA 18196-1601 US&. For a comprehensive Introduction to zeolite, see Ref. 31
tPermanient a dis: Pfizr Mec., Speciality Minerals 9 Highland

Ave. Blethlehemv, PA 16017, USA. tFor a recen review of this area, see f. a
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can damage the material during data acquisition The
AFM allows the imaging of insulating surfaces under PLEXIGLAS
ambient conditions with molecular resolution without des-
troing the surface. We demonstrated the observation
of real-time processes on the surface of a zeolite
(clinoptilolite) single crystal by imaging with an AFM
under water, salt solutions, and alcohols. 7 Previously, -

AFMs have been used to nondestructively image -
other insulating surfaces with molecular resolution, - "2

at 4 K's or in vacuum." AFMs have imaged
polymers, 15 amino acids crystals,16 and magnetic
domains.17 . s AFMs have also been used for atomic
scale friction measurements'" and for the deposi- "0" RING SAMPLE LIOUNr'
tion and measurement of localized charges.21 Furth-
ermore, AFMs are able to image soft surfaces such as seale 2 The imaging under liquids was performed with aLanguirBlodettfdms and other biological Saled cell that is made of Plxiglas and sealed with an 0-ring.
Langfmuir-Blodgett fls an ote biogcl For more details, see Ref. 32samples" - s in water, because they can image with
nondestructive forces as small as I nN.2

This report details the use of an AFM to image the EXPERIMENTAL
surface structure of several different natural zeolites
(scolecite, stilbite, and faujasite) under various condi- Scolecite,* stilbite,° and faujasitel natural crystals were
tions (i.e., air and aqueous solutions). We report on used initially without any chemical modification. The
the twinning of a scolecite crystal observed at the surfaces studied were determined from both crystal
molecular level, both large- and molecular-scale morphologies and cleavage planes common to the
images of the surface of stilbite, and the surface particular zeolite.97 The scolecite crystal was found to
roughness of faujasite. These observations demons- be twinned by a single-crystal X-ray diffraction.
trate the suitability of AFMs for structural elucidation Computer simulations of the structure were carried
of complex systems. In addition, since the AFM can out on a DEC Micro-Vax II computer running either
image under ambient conditions, this suggests its Chem-X* or Struplot s and using published crystal-
application to the study of processes important to lographic parameters.**
zeolite chemistry, such as ion exchange or surface Each crystal was imaged either in air or 0.1 M
reconstruction. NaOH aqueous solution. The images were collected

with Nanoscope II electronics and associated soft-
ware."t Each image required 2.5-10 s for acquisition.

LIGHT The crystal was mounted in a particular orientation
onto a stainless-steel plate with a small amount of 2
ton epoxy (Devcon 2 ton), and the plate was placed in

PHOTOOIODE the sample holder of the AFM (Figure 1). Imaging inliquids was performed with a sealed cell shown in
LN < Figure 2. Several reproducible scans were made for

each sample, to insure that the applied force in each
experiment was nondestructive. Images were slightly

CANTILEVER Structural references for each are as follows: scolecite, Ref.
29; stilbite, Ref. 30; faujasite, Ref. 31.

*A scolecite crystal was kindly supplied by Mark Davis of
Virginia Polytechnic Institute and R.B. Higgins (Mobil). The
crystal had been identified by X-ray diffraction.

'The stilbite crystal (Oxbow Dam, Oregon) was identified by
powder X-ray diffraction on some smaller crystals with the

iii same habit as the one used in ths study. The crystals were kindly
~iIII 'jprovided by Norman Herron of Central Research and Develop-

mert department, E.L. duPont deNemours & Co.

XYZ 1The faujasite crystals used in this study were kindly provided
TRANSLATOR by the UCSB Geology Department. The crystals were identified

by X-ray diffraction and electron microprobe data.Kiure 1 AFM schematic. The AFM detect the vertical motion
of the tip by sensing the displacement of the reflected beam * Chem.X, developed and distributed by Chemical Design Ltd,
with a two-segment photodode. A feedback loop keeps the Oxford, England.
vertical deflectIton of the tip, and therse the force that the tip
a on the surface, constant by moving the surface up aind Digtal Instruments, Inc., 6780 Cortons Drive. Santa Barbara,
down with the xw translator CA 93117.
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crystal structure data) angles between two directions
are 50* (46), 740 (72*), and 56° (62?). These distances
and angles correspond to the arrangement of the
8-ring centers in the structure. The repeating dis-
tances of the AFM image (Color Plate I) agrees well
with the computer simulation of the structure (Figure
3), considering that the (001) surface is not readily
cleavable and was cut with scalpel and hammer. The
resolution enables one to clearly see the 8-ring pores
of the structure. Furthermore, six individual tet-
rahedra (white points) around a hole can be seen in
the AFM image (see white arrow in Color Plate 1; the
hole is at about the distance of the length of the arrow
from the tip of the arrow in the pointing direction of
the arrow).

Apparent twinning is also observed on a different
section of the surface of the crystal as shown in Color
Plate 2. Comparing Color Plate 2 with the computer-
simulated structure in Figure 3, one notices that the
pattern rather abruptly changes as one moves from
the upper right-hand corner to the lower left-hand
corner, although the twin boundary is not clearly
delineated. This is most apparent in the inversion of
the dark and light spots on the image. Since the
periodicity remains the same in both directions, it
would appear that the crystal began growing in two
different spatial directions but with the same crystal-
lographic symmetry. The repeating distances are
analogous to those observed in the other section of
the crystal.

The (010) face of stilbite was cleaved and then
imaged in 0.1 M NaOH solution, and a low magnifica-

3 tion image is given in Color Plate 3. The "sheaflike"
Rgure3 Structural representation of the scolecite (001) surface tructure of the (1 surfae manifests as steps

showing interconnected aluminate and silicate tetrahedra (a = structure of the (010) surface manifests as steps
6.52 A, b = 18.96 A, p = 108.86). A unit cell is outlined between terraces in this image. These are common in

natural stilbite crystals as noted by Gottardi and
Galli.3

3 At a higher magnification and using a
processed using a low-pass filter. All features de- high-pass filter (second-order filter, 12 dB/octave),**
scribed were apparent in the unprocessed data. The the terraces above and below one step that are at
height information for the molecular resolution different height levels separated by the step height
images is a convolution of the surface structure with appear to be at the same height level (Color Plate 4).
the tip shape and does therefore reveal only relative The step between these terraces shows the framework
and not absolute height information. No roughness very distorted, because the slope is very large at the
calculation was done for this reason either. position of the actual step. At an even higher

magnification of the stilbite surface, only one terrace
DISCUSSION was imaged (Color Plate 5). The observed repeat

distances between cavities were 6.5 ± 0.6 A in the 51
By comparing the AFM images with the crystal ± 50 direction and 5.3 ± 0.5 A in the 173 ± 20
structure simulation, agreement within 10% of the direction, which agrees well with the known spacings
distances and angles in the image and crystal face and angles (1/2a = 6.8 A, 1/2c = 5.6 A, b = 128°)
structure was found for each. (Figure 4).

The scolecite (001) surface was cut with a scalpel The faujasite crystal was imaged as is along the
and then imaged in air. The resolution obtained is (111) surface in 0.1 M NaOh (Color Plate 6). This
remarkable (Color Plate 1): Measured repeating dis- image shows an extremely rough surface compared
tances of 5.3 ± 0.6 A in the 116 ± 30 direction (angles - to the other zeolites in this study. Furthermore, steps
of these directions are measured from the positive across the image make the surface even rougher. A
x-axis counterclockwise; the distances and angles
were determined by Fourier transformation) 6.6 ±
0.6 A in the 60 ± 30 direction, and 5.7 ± 0.6 A in the ' This high-pass filter has here a cutoff period of 8 A. Periodic
10 ± 3° direction are observed. The corresponding structure of less than 8 A is not attenuated in height. Everydoubling of the periodic structure, starting at 8 k attentuatesvalues from crystal structure data for the (001) the height by a factor of 4 (1.6 nm: attenuation 1/4; 3.2 nm:
surface are 5.0, 6.6, and 6.2 A. The measured (and attenuation 1/16; etc).

ZEOLITES, 1991, Vol 11, June 431
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FIgure 5 Structural representation of the faujasite (111) sur-
face. Only tetrahedral atoms are shown for clarity. The distance
between the centers of two 6-rings or between 6-rings and
12-rings is 10 A projected onto the (111) surface

synthesized and modified, might increase the resolu-
nte 4 Structural representatior of stilbite (010) surface tion of the faujasite (I 11) surface when imaged withshowing interconnected aluminte and silicate ttrahedra (a136 ,c=1.7A 3 = 180) ntcl sotie an AFM.

13.64 A, c = 11.27 A, p = 128.0). A unit cell is outlinedanAM

CONCLUSION
simulation of the faujasite structure is shown in Figure
5. This simulation depicts the tetrahedral atoms of This study demonstrates the utility and versatility of
the framework only for clarity. If one views the an AFM for examining the surface structure of
structure as sodalite units (60 atom truncated zeolite surfaces under conditions of interest, i.e., in
octahedra, Si12AII 2O3 6) arranged in a tetrahedral aqueous solutions or in air. We have observed
fashion through the bridging oxygen atoms of "dou- twinning of scolecite (001) on the molecular scale,
ble" 6-rings" to form supercages, the idea that the both large-scale and molecular images of stilbite's
surface should be rough becomes clear. As one looks (010) surface, and the (111) surface of faujasite. Since
into a supercage down a threefold axis, there are 6 the AFM can image under ambient conditions,
soldalite units that surround the 12-ring opening, surface processes (e.g., ion exchange or external
Each sodalite is connected to the next through a surface adsorption) that are significant to science and
double 6-ring, and 4 sodalite units are arranged in a technology can be studied. The ability to observe the
tetrahedral manner around any central one. These surface of faujasite is extremely important due to the
sodalite units then must alternate up and down commercial applications of its isostructural analogs:
around the 12-ring window, which appears to be zeolite X and Y.
deeper due to the larger pore size. Therefore, these
units and 12-ring windows are not coplanar. Flatter ACKNOWLEDGEMENTS
crystal surfaces, naturally occurring or chemically The authors would like to thank Drs. T.E. Gier, R.

" The nomenclature 6-ring, etc., corresponds to the number of vonBallmoos, D.H. Olson, and R.B. Higgins for
tetrahedral atoms in the opening of a zeolite. For an introduction helpful discussions, Drs. N. Keder and W.T.A.
to zeolites, see Ref. 3 Harrison for help with single-crystal X-ray diffraction
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